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We propose a method of constructing approximately the solutions of equations 
which describe nonlinear oscillations of viscoelastic systems. In contrast to what 

was done in [l-3], we present the method of a direct constructing the solutions 
of integro-partial differential equations without first having to reduce them to 

ordinary equations with a subsequent reduction to standard form, As is shown in 

(3-51, oscillations of viscoelastic systems are described by nonlinear integro- 
partial differential equations. The method proposed in Cl-31 for studying such 

equations by applying the Bubnov-Galerkin method or the method of lines invol- 

ved in thereductionof these equations to ordinary differential equations, setting 
them into a standard form, and then carrying out an averaging process. 

We present below a direct method for the construction of asymptotic expan- 

sions of the solutions of the corresponding equations of lscoelasticity (*). 

1, We begin with the consideration of linear problems of the dynamic theory ofvis- 
coelasticity. The dynamic equations of the linear theory of viscoelasticity have the form 

C5, 61 @U 
-= 

p at2 
pF .+ uAu + (h + p) grad div u - (1.1) 

au*Au - e (h* + P*) grad div u, u = (ul, us, us) 
t 

PL*cp(4 x) = + 
s 

’ r (t -Z)(p(Z, x)dt 

0 

h*cp (t, x) = s ro (1 -z) cp (z, x) dz 
0 

These equations must be supplemented with appropriate initial and boundary conditions. 

In [3, 41 it is shown that for load-carrying structures of polymer materials the parame- 

ter e can be regarded as small. By analogy with [7, 81 we seek a solution of the system 

(1.1) in the following form : 

u (1, x) = a (!) q (5) cos tl (t) + ml (a, 0, x) + 0 (ex) (1.2) 

Here q (x) is a vector-valued function of the vector argument x = (zi, x2, x,), and the 
functions a (t) and t) (1) are determined from the equations 

(I’ = eA1 (u) +- 0 (E*), 0’~ (,, + rB1 (a) + 0 (E’) (1.3) 

The problem amounts to finding a way to determine the functions A,, B, and UI. Be- 
fore proceeding in this direction, we carry out the following calculations. In accord with 

* ) The problem of constructing directly the solutions of the equations of viscoelasticity 
was posed hv A.A.Il’iushin. 
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the relations (1.2) and (1.3) we obtain 

d2Uliltz z - a$6J2 COS 0 ;- E /<,I2 $.I?!$ - 2,-_llrpo sin fJ _ zB,acp’o ~0s @j + 0 (f) (1.4) 
i 

Further, we can show, under fairly general assumptions, that 

a (t - t) = a (1) + 0 (FT), 0 (I -- T) -=z 0 (1) ~~ 0 (T) + 0 (ET) 

Therefore assuming that 
00 xl 

s 
’ I’ (s) sds < const, i I’o (sj sds < cod 

aJ 0 05 0 

' 
s 

r (s)ds = O(e), 1 I'o (s) ds = 0 (8). E -0, a>0 
a/r a/r 

we find 
**Au = 3 aAcp (M cos Cl f N sin 0) + 0 (a) (1.5) 

a (h* + p*) grad div u = ea grad div cp [jl’+~)CosOi-(Q+~jsin0]+O(E) 

co m 

M = s r (s) cos wsds, N = 
s 

T (s) sin osds 

0 0 

co 

P= ro(s)cososds, 
s 

Q = fro(s) sin osds 

0 0 

Substituting the relation (1.2) into Eq. (1.1) and taking into account the relations (1.4) 

and (1.5). we obtain, to within quantities of order e , 

-pacpd co9 I3 of- E 
i 

po2 2 - 2pA~cpo sin 0 - 2pBnzcpo Cos O)= (1.6) 

[u.Acp + (h + pigrad div cp] a cos 6 + a [pAul + (h + P) grad div ~11 - 

’ abcp (M cos 0 + :V sin 0) - EU grad div 
Y 

[(PC Fj cos0-+ (Q i:)sin0] 

The determination of the functions A,, B, and n1 from Eq. (1.6) in the general case 

requires a complicated procedure. Therefore we describe here only one of the possible 

ways of solving this problem. For example, if we determine the function (1 12) as the 
solution of the equation 

CLAN + (A + 11) grad tliv cp + pu~~cp = u (1.7) 

then for determining the functions A, and B, we can proceed as follows. We multiply 

Eq. (1.6) scalarly by cp (x) sin 6 and integrate with respect to s over the surface .f and 

with respect to 0 from 0 to 2~. Next we multiply (1.6) by q (x) cos 0 and follow the 
same procedure. For the determination of ZLI we can also use the equation 

We give an example. Consider the longitudinal oscillations of a viscoelastic rod of 
length I 

(1.8) 

uIxzo= 0, au ,=o au 

7% v=(j ’ 
U lizo 1 !I (I, E), 1 1=0 I = 12 (S, Ej 
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In this case Eqs. (1.6) and (1.7) assume the form 

rp” (x) -I- p%Prp = 0 
&J 

(1.9) 

- - P2a2 Z$ + 2p2wAl(p sin 0 + 2pGzBl(p cos Q = a~” (~1 cos 0 CT@ t_ ,v sin 9) 

From the first of Eqs. (1.9) we obtain 
m 

cp (x) = 2 rn sin (pto,,s), q (0) z= .cp’ (I) == 0 
TX=1 

po,=P$L, tt=i,2 ,.*. 

We denote the functions A,, B,, a and 0 by a subscript n. M~tiplying the second of 

Eqs. (1.9) first by rp cos Bn, and then by CQ sin 8, and integrating the result with respect 
to x and On over the intervals 0 < x < I, 0 Q 0, < 2n, we find 

.4i, = yz Nw,a,, B1,, = ‘1% M,o,, 

m cm 

M, = 
s 

r (5) COR cr,,,sds, N, = * r (s) sin o,sds 
s 

0 0 

Integrating now Eqs. (1.3). we obtain an and 6, 

Finally, we have 

sin 61~s 

Tl=l 

(the parameters b,, and o,, are obtained from the initial conditions), 

2, We proceed now to consider the equations of nonlinear viscoelasticity obtained in 
[3], Assuming that the functions R *1 and Re2 in these equations are independent of z 
and that the integral terms are proportional to a small parameter, we can extend the me- 

thod of constructing solutions, as described anove, to equations of this kind. 

Let us illustrate this method applying it to problem (1.8) in which the right-hand side 
is supplemented by the nonlinear term 

Since the calculations here are analogous to the previous ones, we give only the transfor- 

mations of the nonlinear term 1. Using the expansion (1.3) and (I. 4), we find, as above, 
to within terms of order E 

1’ 

I = E ’ G (t - z) u3qJ’qJ” co.53 e&T + 0 (E) - 
s 

_ 4 ~a~(p’3(p” (C cos 0 -t D sin 0) $ 0 (E) 

0 cz1 co 

+ c =- 
s 

c (8) co.5 osds, D = G(s) sin osds 
s 

0 a 

We note that in calculating the integral term only, terms containing the first harmo- 

nics are retained here. In the general case, in the expansion of the integrand function in 
a Fourier series we can include the terms containing the higher harmonics in the equa- 
tion from which the function u1 is determined. Carrying out the procedure described 



904 A. U. Kar~imov 

above, we obtain equations for the determination of a and 6, which are easily integra- 
ted. The subsequent calculations are obvious. 
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We consider a dynamic mixed problem for an elastic halfspace, weakened by a 
system of two-dimensional cracks and subject to conditions of anti-plane defor- 

mation. 

We raise the problem of determining the jump in the stresses at the cracks in 
an elastic halfspace when shear displacements on the cracks are known. Using 
the method developed in [ 1, 21 we reduce the system of integral equations for 

the mixed problem to an equivalent system of linear algebraic equations with a 
completely continuous operator. We analyze the problems relating to the solva- 
bility of the integral equations and the infinite system. Investigation of the solu- 
tion in the zero approximation is given. 

The dynamics of an elastic halfspace with a crack was studied in @, 4]where- 
in the main emphasis was focused on problems relating to crack propagation and 
the diffraction of elastic waves by the cracks. 


